Part Number Hot Search : 
BCM3416 SBT103AT TD123 02100 29F032 BZ12V C541U 4MC70
Product Description
Full Text Search
 

To Download TS4956EIJT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS4956
Stereo audio amplifier system with I2C bus interface

Operating from VCC = 2.7 V to 5.5 V IC bus control interface 38 mW output power @ VCC = 3.3 V, THD = 1%, F = 1 kHz, with 16 Load Ultra low consumption in standby mode: 0.5 A Digital volume control range from +12 dB to -34 dB 32-step digital volume control Stereo loudspeaker option by I2C 8 different output mode selections Pop & click reduction circuitry Flip-chip package, 18 bumps with 300 m diameter Lead-free flip chip package Output power limitation on headphone for eardrum damage consideration
RIN PGH
TS4956 - Flip-Chip18
Pin connections (top view)
GND
MLO
LHP-
RHP+
VCC
SDA
LIN
BYPASS
Description
The TS4956 is a complete audio system device with three dedicated outputs, one stereo headphone, one loudspeaker drive and one mono line for a hands-free set. The stereo headphone is capable of delivering more than 25 mW per channel of continuous average power into 16 single-ended loads with 0.3% THD+N from a 5 V power supply. The device functions are controlled via an IC bus, which minimizes the number of external components needed. The overall gain and the different output modes of the TS4956 are controlled digitally by the control registers which are programmed via the IC interface. It has also an internal thermal shutdown protection mechanism.
VCC MIN SRP+ SRN-
I2CVCC
MIP
GND
SCL
Applications

Mobile phones (cellular / cordless) PDAs Laptop / notebook computers Portable audio devices
Device summary table
Part Number TS4956EIJT Temperature Range -40C to +85C Package Lead free flip-chip18 Packing Tape & Reel Marking 56
May 2006
Rev. 3
1/51
www.st.com
51
Absolute maximum ratings & operating conditions
TS4956
1
Absolute maximum ratings & operating conditions
Table 1.
Symbol VCC Vi Toper Tstg Tj Rthja Pdiss ESD Latch-up Supply voltage
(1)
Absolute maximum ratings (AMR)
Parameter Input voltage (2) Operating free air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to ambient (3) Power dissipation Susceptibility - human body Latch-up immunity Lead temperature (soldering, 10sec) model(5) Susceptibility - machine model Value 6 G ND to VCC -40 to + 85 -65 to +150 150 200 Internally limited(4) 2 150 200 260 kV V mA C Unit V V C C C C/W
1. All voltage values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V 3. Device is protected in case of over temperature by a thermal shutdown activated at 150C. 4. Exceeding the power derating curves during a long period may involve abnormal operating conditions. 5. Human body model, 100 pF discharged through a 1.5 k resistor, into pin to VCC device
Table 2.
Symbol VCC(1) RL
Operating conditions
Parameter Supply voltage Load resistor Speaker/BTL output (modes 1,2,7) Headphone, MLO output (modes 3,4,5,6,) Load capacitor RL = 8 to 100 (Speaker/BTL output - modes 1,2,7) RL = 16 to 100 (Headphone, MLO output - modes 3,4,5,6) RL > 100 Flip-chip thermal resistance junction to ambient Value 2.7 to 5.5V
8 16
Unit V
CL
500 400 100 90(2)
pF
Rthja
C/W
1. For proper functionality of I2C bus, V CC pins must not be grounded. ESD protection diodes ground data and clock wires and cause dysfunction of I2C bus in this condition. 2. With heat sink surface 120mm2
Table 3.
Symbol I2CV
CC
IC electrical characteristics
Parameter I2C supply voltage(1) Maximum low level input voltage on pins SDA, SCL Minimum high level input voltage Maximum input current (pins SDA, SCL), 0.4V < V in < 4.5V SCL maximum clock frequency Max low level output voltage, SDA pin, Isink = 3mA Value 2.7V to 5.5V 0.3 I2CVCC 0.7 I2CVCC 10 400 0.4 Unit V V V A kHz V
VILl VIH IIN FSCL Vol
1. Must be less or equal than power supply voltage VCC of the device
2/51
TS4956
Typical application schematic
2
Typical application schematic
Table 4. External components descriptions
Functional description Supply bypass capacitors which provide power supply filtering. Bypass capacitor which provides half-supply filtering. Input capacitors which form together with input impedance Zin first-order high pass filter to block DC voltage on inputs Output capacitor which forms with output load RL first-order high pass filter to block half-supply voltage on single-ended output. Resistor to keep Cout charged for better pop performance on single-ended output.
Components Cs1, C s2 Cb Cin1 to Cin4 Cout R1
Figure 1.
Typical application for the TS4956 (mode 1, 2, 3, 4, 5, 6)
Vcc
Cs1 1F
Cs2 100nF
+
C5
C3
Vcc
Vcc
TS4956
Diff. input +
Cin1 A1 + 330nF Cin2 A2
LHP Amplifier
MIP
Stereo Input Left
PHG Amplifier
LHP
MODE3: Gx(MIP+MIN) MODE4: GxLIN
B6
16/32 Ohms
MIN
Diff. input SE input left
+ 330nF
Stereo Input Right
RHP Amplifier
PHG
A7
MODE3: Gx(MIP+MIN) MODE4: GxRIN
Cin3 + 330nF B4
Mode Select LIN Stereo Input Left
RHP
Speaker Amplifier
D6
16/32 Ohms
B2
MODE1: Gx(MIP+MIN) MODE2: Gx(LIN+RIN)
8 Ohms
SRP+ SRNMLO Amplifier D2
SE input right Cin4
+ 330nF
A5
RIN
Stereo Input Right
MODE5: Gx(MIP+MIN) MODE6: Gx(LIN + RIN)
MLO
E7 Cout+ 220F R1 1k
16/32 Ohms
Bias BYPASS
D4
Cb 1F SDA I2CVCC SCL
I2C
Digital volume control
GND C1
GND C7
SDA
SCL E1
I2CVCC
E3
E5
+
I2C BUS
3/51
Typical application schematic Figure 2. Typical application for the TS4956 (mode 7)
Vcc
TS4956
Cs1 1F
Cs2 100nF
+
C5
C3
Vcc
Vcc
TS4956
A1
LHP Amplifier
MIP
Stereo Input Left
PHG Amplifier
LHP
B6
MODE7: BTL - GxRIN PHG
A7
A2
MIN
Stereo Input Right
RHP Amplifier
8 Ohms
SE input left
Cin3 + 330nF B4
Mode Select LIN Stereo Input Left
RHP
Speaker Amplifier
D6
B2
MODE7: GxLIN
SRP+ SRNMLO Amplifier D2
SE input right Cin4
+ 330nF
A5
RIN
Stereo Input Right
8 Ohms
MLO
E7
Bias BYPASS
D4
Cb 1F SDA I2CVCC SCL
I2C
Digital volume control
GND C1
GND C7
SDA E5
SCL E1
I2CVCC
E3
+
I2C BUS
4/51
TS4956
Typical application schematic
2.1
I2C interface
The TS4956 uses a serial bus, which conforms to the IC protocol (the TS4956 must be powered when it is connected to IC bus), to control the chip's functions via two wires: Clock and Data. The Clock line and the Data line are bidirectional (open-collector) with an external chip pullup resistor (typically 10 k). The maximum clock frequency in fast-mode specified by the IC standard is 400kHz, and this frequency is supported by the TS4956. In this application, the TS4956 is always the slave device and the controlling MCU is the master device. The I2CVCC pin determines the power supply of the TS4956's I2C interface. The voltage connected to this pin must be equal or less than the TS4956 power supply voltage VCC. The minimum value of the I2CVCC voltage is 2.7V. When the I2CVCC pin is connected to an I2C voltage, the TS4956 is ready to communicate via the I2C bus. When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with an ultra low standby current on the order of a few nanoamperes. In this condition the TS4956 cannot receive I2C command from the I2C bus. In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not floating) presented in Table 3 on page 2, in order for the circuit to function properly.
Table on page 5 summarizes the pin descriptions for the IC bus interface.
Table 5.
Pin SDA SCL I2CVCC This is the serial data pin This is the clock input pin I2C interface power supply
IC bus interface: pin descriptions
Functional description
2.1.1
IC operation description
The host MCU can write into the TS4946 control register to control the TS4956 and read from the control register to get the current configuration of the TS4956. The TS4956 is addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956 control register address is $5Dh. Table 6.
A6 1
The first byte after the START message for addressing the device
A5 0 A4 1 A3 1 A2 1 A1 0 A0 1 Rw X
In order to write data into the TS4956 control register, after the "start" message the MCU must send the following data:

send byte with the IC 7-bit slave address and with the R/W bit set low send the data (control register setting)
All bytes are sent with MSB bit first. The transfer of written data ends with a "stop" message. When transmitting several data, the data can be written with no need to repeat the "start" message and addressing byte with the slave address.
5/51
Typical application schematic
TS4956
In order to read data from the TS4956, after the "start" message, the MCU must send and receive the following data:

send byte with the IC 7-bit slave address and with the R/W bit set high receive the data (control register value)
All bytes are read with MSB bit first. The transfer of read data is ended with "stop" message. When transmitting several data, the data can be read with no need to repeat the "start" message and the byte with slave address. In this case the value of control register is read repeatedly. Figure 3. IC read/write operation
SLAVE ADDRESS CONTROL REGISTERS
SDA
S
1
0
1
1
1
01
0
A
D7 D6 D5 D4 D3 D2 D1 D0 A
P
Start condition
R/W
Volume Control settings
Output Mode settings
Stop condition
Acknowledge from Slave
Acknowledge from Slave
Table 7.
Output mode selection: G from -34.5dB to + 12dB (by steps of 1.5dB)(1)
RHP SD SD SD GX (MIP + MIN) G x RIN SD SD BTL: G x RIN LHP SD SD SD GX (MIP + MIN) G x LIN SD SD BTL: G x RIN Speaker P/N SD Gx (MIP + MIN) GX (RIN + LIN) SD SD SD SD G x LIN Mono L/O SD SD SD SD SD GX (MIP + MIN) GX (RIN + LIN) SD
Output Mode # 0 1 2 3 4 5 6 7
1. SD = Shutdown Mode G = Audio Gain MIP = Mono Input Positive MIN = Mono Input Negative RIN = Stereo Input Right LIN = Stereo Input Left
6/51
TS4956
Typical application schematic
2.1.2
Gain and mode setting operations
The gain of the TS4956 ranges from -34.5dB to +12 dB. At power-up, output channels are set to stand-by mode. Table 8.
-34.5 -33 -31.5 -30 -28.5 -27 -25.5 -24 -22.5 -21 -19.5 -18 -16.5 -15 -13.5 -12 -10.5 -9 -7.5 -6 -4.5 -3 -1.5 0 +1.5 +3 +4.5 +6 +7.5 +9 +10.5 +12
Gain settings truth table
D7 (MSB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
G: Gain (dB) #
7/51
Typical application schematic Table 9.
D2 0 0 0 0 1 1 1 1
TS4956
Output mode settings truth table
D1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 COMMENTS OUTPUT MODE 0 OUTPUT MODE 1 OUTPUT MODE 2 OUTPUT MODE3 OUTPUT MODE 4 OUTPUT MODE 5 OUTPUT MODE 6 OUTPUT MODE 7
2.1.3
Acknowledge
The number of data bytes transferred between the start and the stop conditions from the CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one acknowledge bit. The TS4956 which is addressed, generates an acknowledge after the reception of each byte that has been clocked out.
8/51
TS4956
Electrical characteristics
3
Table 10.
Symbol
Electrical characteristics
VCC = +2.7 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions Mode 1, 2, No input signal, no load Mode 3, No input signal, no load ICC Supply Current Mode 4, No input signal, no load Mode 5, 6, No input signal, no load Mode 7, No input signal, no load ISTBY Standby Current No input signal No input signal Modes 1, 2 Speaker Output, RL = 8 Mode 3 Headphone Outputs, RL = 16 Mode 4 Headphone Outputs, RL = 16 Mode 7 BTL, Speaker Output, RL = 8 30 20 270 35 20 Min. Typ. 3.4 4.6 4.4 1.75 5.7 0.5 Max. 4.4 6 5.7 2.3 7.4 2 A mA Unit
5 5 5 5 35 25 285 42 25 0.5 0.5 0.5
50 50 20 20 mV
VOO
Output Offset Voltage
Modes 3, 4 Headphone Output Power THD+N = 1% max, F = 1kHz, RL = 16 (Phantom Ground mode) THD+N = 1% max, F = 1kHz, RL = 32 Pout BTL, Speaker Output Power MLO Output Power Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, RL = 8 Modes 5, 6 THD+N = 1% max, F = 1kHz, RL = 16 THD+N = 1% max, F = 1kHz, RL = 32 G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8, Pout = 200mW Modes 3, 4, RL = 16, Pout = 15mW Modes 5, 6, RL = 16, Pout = 30mW F = 217Hz, G = +1.5dB, Vripple = 200mVpp, Inputs Grounded, Cb = 1F Mode 1, Speaker output, RL = 8 Mode 2, Speaker output, RL = 8 Mode 3, Headphone outputs, RL = 16 Mode 4, Headphone outputs, RL = 16 Mode 5, MLO output, RL = 16 Mode 6, MLO output, RL = 16 Mode 7, BTL, Speaker outputs, RL = 8
mW
THD+N
Total Harmonic Distortion + Noise
%
PSRR
Power Supply Rejection Ratio (1)
60 55 61 75 62 57 73
dB
9/51
Electrical characteristics Table 10.
Symbol
TS4956
VCC = +2.7 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions Mode 4 F = 1kHz, RL = 16, Pout = 15mW F = 20Hz to 20kHz, RL = 16, Pout = 15mW Mode 7 F = 1kHz, RL = 8, Pout = 200mW F = 20Hz to 20kHz, RL = 8, Pout = 200mW A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, RL = 8 Mode 2 - Speaker output, RL = 8 Mode 3 - Headphone output, RL = 16 Mode 4 - Headphone output, RL = 16 Mode 5 - MLO output, RL = 16 Mode 6 - MLO output, R = 16 Mode 7 - BTL, Speaker output, RL = 8, G = +10.5dB -34.5 1.5 0.1 50 25.5 38 25.5 25.5 60 30 45 30 30 70 1 0.6 70 34.5 62 34.5 34.5 90 ms s Min. Typ. 50 50 80 60 Max. Unit
Crosstalk Channel Separation
dB
SNR
Signal To Noise Ratio
91 90 84 90 85 85 92 +12
dB
G
Digital Gain Range Digital Gain Stepsize Stepsize Error Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground Input Impedance, all Gain MIN input impedance referenced to ground setting Stereo input RIN input impedance LIN input impedance Wake up time Standby time
dB dB dB
Zin
k
tWU tSTBY
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ f = 217Hz.
10/51
TS4956 Table 11.
Symbol
Electrical characteristics VCC = +3.3 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions Mode 1, 2, No input signal, no load Mode 3, No input signal, no load Min. Typ. 3.6 4.8 4.6 1.8 6 0.5 Max. 4.7 6.2 6 2.4 7.8 2 A mA Unit
ICC
Supply Current
Mode 4, No input signal, no load Modes 5, 6, No input signal, no load Mode 7, No input signal, no load
ISTBY
Standby Current
No input signal No input signal Modes 1, 2 Speaker Output, R L = 8 Mode 3 Headphone Outputs, R L = 16 Mode 4 Headphone Outputs, R L = 16 Mode 7 BTL, Speaker Output, RL = 8 Modes 3, 4 THD+N = 1% max, F = 1kHz, R L = 16 THD+N = 1% max, F = 1kHz, R L = 32 Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, R L = 8 Modes 5, 6 THD+N = 1% max, F = 1kHz, R L = 16 THD+N = 1% max, F = 1kHz, R L = 32 G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8, Pout = 300mW Modes 3, 4, RL = 16, Pout = 15mW Modes 5, 6, RL = 16, Pout = 50mW F = 217Hz, G = +1.5dB, V ripple = 200mVpp, Inputs Grounded, Cb = 1F Mode 1, Speaker output, RL = 8 Mode 2, Speaker output, RL = 8 Mode 3, Headphone outputs, RL = 16 Mode 4, Headphone outputs, RL = 16 Mode 5, MLO output, R L = 16 Mode 6, MLO output, R L = 16 Mode 7, BTL, Speaker outputs, R L = 8 Mode 4 F = 1kHz, RL = 16, Pout = 15mW F = 20Hz to 20kHz, RL = 16, Pout = 15mW Mode 7 F = 1kHz, RL = 8, Pout = 300mW F = 20Hz to 20kHz, RL = 8, Pout = 300mW 32 30 430 58 32
5 5 5 5 38(1) 36(1) 450 65 38 0.5 0.5 0.5
50 50 20 20 mV
VOO
Output Offset Voltage
Headphone Output Power (Phantom Ground Mode) Pout BTL, Speaker Output Power MLO Output Power
mW
THD+N
Total Harmonic Distortion + Noise
%
PSRR
Power Supply Rejection Ratio (2)
63 57 63 77 64 58 74 50 50 80 60
dB
Crosstalk Channel Separation
dB
11/51
Electrical characteristics Table 11.
Symbol
TS4956
VCC = +3.3 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, R L = 8 Mode 2 - Speaker output, RL = 8 Mode 3 - Headphone output, R L = 16 Mode 4 - Headphone output, R L = 16 Mode 5 - MLO output, RL = 16 Mode 6 - MLO output, R = 16 Mode 7 - BTL, Speaker output, RL = 8, G = +10.5dB -34.5 1.5 0.1 Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance 50 25.5 38 25.5 25.5 60 30 45 30 30 70 1 0.6 70 34.5 62 34.5 34.5 90 ms s Min. Typ. Max. Unit
SNR
Signal To Noise Ratio
93 92 85 91 87 87 95 +12
dB
G
Digital Gain Range Digital Gain Stepsize Stepsize Error
dB dB dB
Zin
Input Impedance, all Gain setting
k
tWU tSTBY
Wake up time Standby time
1. Internal power limitation on headphone outputs (see application information). 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz.
12/51
TS4956 Table 12.
Symbol
Electrical characteristics VCC = +5 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions Mode 1, 2, No input signal, no load Mode 3, No input signal, no load Min. Typ. 4 5.3 5.2 1.9 6.7 0.5 Max. 5.2 6.9 6.8 2.5 8.7 2 A mA Unit
ICC
Supply Current
Mode 4, No input signal, no load Modes 5, 6, No input signal, no load Mode 7, No input signal, no load
ISTBY
Standby Current
No input signal No input signal Modes 1, 2 Speaker Output, R L = 8 Mode 3 Headphone Outputs, R L = 16 Mode 4 Headphone Outputs, R L = 16 Mode 7 BTL, Speaker Output, RL = 8 Modes 3, 4 THD+N = 1% max, F = 1kHz, R L = 16 THD+N = 1% max, F = 1kHz, R L = 32 Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, R L = 8 Modes 5, 6 THD+N = 1% max, F = 1kHz, R L = 16 THD+N = 1% max, F = 1kHz, R L = 32 G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8, Pout = 700mW Modes 3, 4, RL = 16, Pout = 15mW Modes 5, 6, RL = 16, Pout = 100mW F = 217Hz, G = +1.5dB, V ripple = 200mVpp, Inputs Grounded, Cb = 1F Mode 1, Speaker output, RL = 8 Mode 2, Speaker output, RL = 8 Mode 3, Headphone outputs, RL = 16 Mode 4, Headphone outputs, RL = 16 Mode 5, MLO output, R L = 16 Mode 6, MLO output, R L = 16 Mode 7, BTL, Speaker outputs, R L = 8 Mode 4 F = 1kHz, RL = 16, Pout = 15mW F = 20Hz to 20kHz, RL = 16, Pout = 15mW Mode 7 F = 1kHz, RL = 8, Pout = 700mW F = 20Hz to 20kHz, RL = 8, Pout = 700mW 32 35 1000 140 80
5 5 5 5 39(1) 43(1) 1055 150 88 0.5 0.5 0.5
50 50 20 20 mV
VOO
Output Offset Voltage
Headphone Output Power (Phantom Ground Mode) Pout BTL, Speaker Output Power MLO Output Power
mW
THD+N
Total Harmonic Distortion + Noise
%
PSRR
Power Supply Rejection Ratio (2)
66 60 65 78 66 61 75 50 50 80 60
dB
Crosstalk Channel Separation
dB
13/51
Electrical characteristics Table 12.
Symbol
TS4956
VCC = +5 V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Conditions A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, R L = 8 Mode 2 - Speaker output, RL = 8 Mode 3 - Headphone output, R L = 16 Mode 4 - Headphone output, R L = 16 Mode 5 - MLO output, RL = 16 Mode 6 - MLO output, R = 16 Mode 7 - BTL, Speaker output, RL = 8, G = +10.5dB -34.5 1.5 0.1 Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance 50 25.5 38 25.5 25.5 60 30 45 30 30 70 1 0.6 70 34.5 62 34.5 34.5 90 ms s Min. Typ. Max. Unit
SNR
Signal To Noise Ratio
96 96 85 91 90 90 98 +12
dB
G
Digital Gain Range Digital Gain Stepsize Stepsize Error
dB dB dB
Zin
Input Impedance, all Gain setting
k
tWU tSTBY
Wake up time Standby time
1. Internal power limitation on headphone outputs (see application information). 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz.
Table 13.
Output noise VCC = 2.7V to 5.5V (all inputs grounded)
G = +12dB Unweighted filter (20Hz 20kHz) Vout (V) 80 99 80 43 80 96 42 G = +10.5dB Unweighted filter (20Hz 20kHz) Vout (V) 100 111 100 52 97 106 52 G = +1.5dB Unweighted filter (20Hz 20kHz) Vout (V) 66 69 67 34 66 67 34
A-weighted filter
A-weighted filter
A-weighted filter
Vout (V) Mode1 - SPK out Mode2 - SPK out Mode3 - LHP, RHP Mode4 - LHP, RHP Mode5 - MLO Mode6 - MLO Mode7 - BTL, SPK out 54 67 55 29 53 65 29
Vout (V) 67 75 68 35 66 73 35
Vout (V) 45 45 45 23 45 45 23
14/51
TS4956
Electrical characteristics
Figure 4.
10
THD+N vs. output power
Vcc=5V F=20kHz Vcc=3.3V F=20kHz
Figure 5.
10
THD+N vs. output power
Vcc=5V F=20kHz Vcc=3.3V F=20kHz
Mode 1, 2 - SPK out RL = 8, G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Mode 1, 2 - SPK out RL = 8, G = +10.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Vcc=2.7V F=20kHz
0.1
0.1 Vcc=2.7V F=20kHz
Vcc=2.7V F=1kHz 0.01 0.01
Vcc=3.3V F=1kHz 0.1
Vcc=5V F=1kHz 1
Vcc=2.7V F=1kHz 0.01 0.01
Vcc=3.3V F=1kHz 0.1
Vcc=5V F=1kHz 1
Output power (W)
Output power (W)
Figure 6.
10
THD+N vs. output power
Vcc=5V F=20kHz Vcc=3.3V F=20kHz
Figure 7.
10
THD+N vs. output power
Vcc=5V F=20kHz Vcc=3.3V F=20kHz
Mode 1, 2 - SPK out RL = 16, G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Mode 1, 2 - SPK out RL = 16, G = +10.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Vcc=2.7V F=20kHz 0.1
0.1 Vcc=2.7V F=20kHz
0.01
Vcc=2.7V F=1kHz 0.01
Vcc=3.3V F=1kHz 0.1
Output power (W)
Vcc=5V F=1kHz 1
0.01
Vcc=2.7V F=1kHz 0.01
Vcc=3.3V F=1kHz 0.1
Vcc=5V F=1kHz 1
Output power (W)
Figure 8.
10
THD+N vs. output power
Figure 9.
10
THD+N vs. output power
Vcc=5V F=20kHz Vcc=2.7V F=20kHz
Mode 3 - LHP, RHP RL = 16 , G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Vcc=5V F=20kHz 1
THD + N (%)
Mode 3 - LHP, RHP RL = 16 , G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V F=20kHz
Vcc=3.3V F=20kHz
Vcc=2.7V F=20kHz
0.1 Vcc=5V F=1kHz 0.01 1E-3
0.1 Vcc=5V F=1kHz 0.01 1E-3 Vcc=3.3V F=1kHz 0.01
Output power (W)
Vcc=3.3V F=1kHz 0.01
Output power (W)
Vcc=2.7V F=1kHz 0.1
Vcc=2.7V F=1kHz 0.1
15/51
Electrical characteristics Figure 10. THD+N vs. output power
10 Mode 3 - LHP, RHP RL = 32 , G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%) THD + N (%)
TS4956 Figure 11. THD+N vs. output power
10 Mode 3 - LHP, RHP RL = 32, G = +10.5dB BW < 125kHz Tamb = 25C
Vcc=2.7V F=20kHz
1 Vcc=2.7V F=20kHz
0.1
Vcc=5V F=1kHz Vcc=3.3V F=20kHz Vcc=5V F=20kHz Vcc=2.7V F=1kHz 0.01
Output power (W)
0.1
Vcc=5V F=1kHz Vcc=3.3V F=20kHz Vcc=5V F=20kHz Vcc=2.7V F=1kHz 0.01
Output power (W)
Vcc=3.3V F=1kHz 0.1
0.01 1E-3
Vcc=3.3V F=1kHz 0.1
0.01 1E-3
Figure 12. THD+N vs. output power
10 Mode 4 - LHP, RHP RL = 16 , G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Figure 13. THD+N vs. output power
10 Mode 4 - LHP, RHP RL = 16, G = +10.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Vcc=5V F=20kHz
Vcc=2.7V F=20kHz
Vcc=3.3V F=20kHz
Vcc=2.7V F=20kHz
Vcc=3.3V F=20kHz
Vcc=5V F=20kHz
0.1
0.1 Vcc=2.7V F=1kHz
Vcc=3.3V F=1kHz 0.01 1E-3
Vcc=5V F=1kHz 0.01
Output power (W)
Vcc=2.7V F=1kHz 0.1
Vcc=3.3V F=1kHz 0.01 1E-3
Vcc=5V F=1kHz 0.01
Output power (W)
0.1
Figure 14. THD+N vs. output power
10 Mode 4 - LHP, RHP RL = 32, G = +1.5dB BW < 125kHz Tamb = 25C Vcc=3.3V F=20kHz 0.1
Figure 15. THD+N vs. output power
10 Mode 4 - LHP, RHP RL = 32, G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V F=20kHz 0.1 Vcc=5V F=20kHz
1
THD + N (%)
Vcc=5V F=20kHz
THD + N (%)
1
Vcc=2.7V F=20kHz
Vcc=2.7V F=20kHz
0.01 1E-3
Vcc=2.7V F=1kHz
Vcc=3.3V F=1kHz 0.01
Vcc=5V F=1kHz 0.1
0.01 1E-3
Vcc=2.7V F=1kHz
Vcc=3.3V F=1kHz 0.01
Vcc=5V F=1kHz 0.1
Output power (W)
Output power (W)
16/51
TS4956 Figure 16. THD+N vs. output power
10 Mode 5, 6 - MLO RL = 16 , G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Electrical characteristics Figure 17. THD+N vs. output power
10 Vcc=5V F=20kHz Vcc=5V F=1kHz 1
THD + N (%)
Mode 5, 6 - MLO RL = 16 , G = +10.5dB BW < 125kHz Tamb = 25C Vcc=2.7V F=20kHz
Vcc=5V F=20kHz Vcc=5V F=1kHz
Vcc=2.7V F=20kHz
0.1
Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 0.1 1
0.1
Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 0.1 1
0.01 1E-3
0.01 1E-3
Output power (W)
Output power (W)
Figure 18. THD+N vs. output power
10 Mode 5, 6 - MLO RL = 32, G = +1.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Figure 19. THD+N vs. output power
10 Vcc=5V F=20kHz Vcc=5V F=1kHz 1
THD + N (%)
Mode 5, 6 - MLO RL = 32, G = +10.5dB BW < 125kHz Tamb = 25C Vcc=2.7V F=1kHz Vcc=2.7V F=20kHz
Vcc=5V F=20kHz Vcc=5V F=1kHz
Vcc=2.7V F=1kHz
Vcc=2.7V F=20kHz
0.1
Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz
0.1
Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz
0.01 1E-3
0.01
Output power (W)
0.1
0.01 1E-3
0.01
Output power (W)
0.1
Figure 20. THD+N vs. output power
10 Mode 7 - BTL, SPK out RL = 8, G = +10.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Figure 21. THD+N vs. output power
10 Mode 7 - BTL, SPK out RL = 16, G = +10.5dB BW < 125kHz Tamb = 25C 1
THD + N (%)
Vcc=5V F=20kHz Vcc=3.3V F=20kHz Vcc=2.7V F=20kHz Vcc=2.7V F=1kHz
Vcc=5V F=20kHz
Vcc=3.3V F=20kHz
Vcc=2.7V F=20kHz
0.1 Vcc=3.3V F=1kHz 0.01 1E-3
0.1
Vcc=5V F=1kHz Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 0.1
Output power (W)
Vcc=5V F=1kHz 0.01 0.1 1 0.01 1E-3
1
Output power (W)
17/51
Electrical characteristics Figure 22. THD+N vs. frequency
10 Mode 1, 2 - SPK out RL = 8 G = +1.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=300mW
THD + N (%)
TS4956 Figure 23. THD+N vs. frequency
10 Mode 1, 2 - SPK out RL = 8 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=300mW Vcc=5V Po=700mW
1
THD + N (%)
1 Vcc=5V Po=700mW
Vcc=2.7V Po=200mW 0.1
Vcc=2.7V Po=200mW 0.1
0.01
20
100
1000
Frequency (Hz)
10000
0.01
20
100
1000
Frequency (Hz)
10000
Figure 24. THD+N vs. frequency
10 Mode 1, 2 - SPK out RL = 16 G = +1.5dB BW < 125kHz Tamb = 25C
Figure 25. THD+N vs. frequency
10 Mode 1, 2 - SPK out RL = 16 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=200mW Vcc=5V Po=400mW
1
THD + N (%)
1 Vcc=3.3V Po=200mW
THD + N (%)
Vcc=5V Po=400mW
Vcc=2.7V Po=120mW 0.1
Vcc=2.7V Po=120mW 0.1
0.01
0.01 20 100 1000
Frequency (Hz)
10000
20
100
1000
Frequency (Hz)
10000
Figure 26. THD+N vs. frequency
10 Mode 3 - LHP, RHP RL = 16 G = +1.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=15mW
Figure 27. THD+N vs. frequency
10 Mode 3 - LHP, RHP RL = 16 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=2.7V Po=15mW 0.1 Vcc=3.3V Po=15mW
1
THD + N (%)
1
THD + N (%)
Vcc=2.7V Po=15mW 0.1
Vcc=5V Po=15mW 0.01 20 100 1000
Frequency (Hz)
Vcc=5V Po=15mW 0.01 20 100 1000
Frequency (Hz)
10000
10000
18/51
TS4956 Figure 28. THD+N vs. frequency
10 Mode 3 - LHP, RHP RL = 32 G = +1.5dB BW < 125kHz Tamb = 25C Vcc=2.7V Po=10mW 0.1
THD + N (%)
Electrical characteristics Figure 29. THD+N vs. frequency
10 Mode 3 - LHP, RHP RL = 32 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=2.7V Po=10mW 0.1 Vcc=3.3V Po=10mW
1
THD + N (%)
1 Vcc=3.3V Po=10mW
Vcc=5V Po=10mW 0.01 20 100 1000
Frequency (Hz)
Vcc=5V Po=10mW 0.01 20 100 1000
Frequency (Hz)
10000
10000
Figure 30. THD+N vs. frequency
10 Mode 4 - LHP, RHP RL = 16 G = +1.5dB BW < 125kHz Tamb = 25C Vcc=5V Po=15mW
Figure 31. THD+N vs. frequency
10 Mode 4 - LHP, RHP RL = 16 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=15mW Vcc=5V Po=15mW
1
THD + N (%)
1
THD + N (%)
0.1
Vcc=2.7V Po=15mW
Vcc=3.3V Po=15mW
Vcc=2.7V Po=15mW 0.1
0.01
0.01 20 100 1000
Frequency (Hz)
10000
20
100
1000
Frequency (Hz)
10000
Figure 32. THD+N vs. frequency
10 Mode 4 - LHP, RHP RL = 32 G = +1.5dB BW < 125kHz Tamb = 25C
Figure 33. THD+N vs. frequency
10 Mode 4 - LHP, RHP RL = 32 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=10mW Vcc=5V Po=10mW
1
THD + N (%)
1 Vcc=5V Po=10mW
THD + N (%)
0.1
Vcc=2.7V Po=10mW
Vcc=3.3V Po=10mW
0.1
Vcc=2.7V Po=10mW
0.01
20
100
1000
Frequency (Hz)
10000
0.01
20
100
1000
Frequency (Hz)
10000
19/51
Electrical characteristics Figure 34. THD+N vs. frequency
10 Mode 5, 6 - MLO RL = 16 G = +1.5dB BW < 125kHz Tamb = 25C
THD + N (%)
TS4956 Figure 35. THD+N vs. frequency
10 Mode 5, 6 - MLO RL = 16 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=2.7V Po=30mW 0.1 Vcc=3.3V Po=50mW
1
THD + N (%)
1 Vcc=5V Po=100mW
Vcc=5V Po=100mW
0.1
Vcc=2.7V Po=30mW
Vcc=3.3V Po=50mW
0.01
20
100
1000
Frequency (Hz)
10000
0.01
20
100
1000
Frequency (Hz)
10000
Figure 36. THD+N vs. frequency
10 Mode 5, 6 - MLO RL = 32 G = +1.5dB BW < 125kHz Tamb = 25C
Figure 37. THD+N vs. frequency
10 Mode 5, 6 - MLO RL = 32 G = +10.5dB BW < 125kHz Tamb = 25C Vcc=3.3V Po=30mW
1
THD + N (%)
THD + N (%)
Vcc=5V Po=60mW Vcc=3.3V Po=30mW
1
Vcc=5V Po=60mW
Vcc=2.7V Po=20mW 0.1
Vcc=2.7V Po=20mW 0.1
0.01
0.01 20 100 1000
Frequency (Hz)
10000
20
100
1000
Frequency (Hz)
10000
Figure 38. THD+N vs. frequency
10 Mode 7 - BTL, SPK out RL = 8 G = +10.5dB BW < 125kHz Tamb = 25C
Figure 39. THD+N vs. frequency
10 Mode 7 - BTL, SPK out RL = 16 G = +10.5dB BW < 125kHz Tamb = 25C
1
THD + N (%)
1
THD + N (%)
Vcc=5V Po=700mW Vcc=2.7V Po=200mW Vcc=3.3V Po=300mW
0.1
0.1
Vcc=2.7V Po=120mW
Vcc=3.3V Po=200mW
Vcc=5V Po=400mW
0.01
20
100
1000
Frequency (Hz)
10000
0.01
20
100
1000
Frequency (Hz)
10000
20/51
TS4956 Figure 40. Output power vs. power supply voltage
1400 1300 Mode 1, 2, 7 1200 BTL, SPK out 1100 F = 1kHz RL=8 1000 BW < 125 kHz Tamb = 25C 900 800 RL=16 700 600 500 400 300 200 100 0 2.5 3.0 3.5 4.0 4.5
Vcc (V)
Electrical characteristics Figure 41. Output power vs. power supply voltage
1600
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
1400 1200 1000 800 600 400 200
Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25C
RL=8 RL=16
RL=32 5.0 5.5
RL=32 3.0 3.5 4.0
Vcc (V)
0 2.5
4.5
5.0
5.5
Figure 42. Output power vs. power supply voltage
50
Figure 43. Output power vs. power supply voltage
70
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
RL=32 40
60 50 40 30 20
RL=32
30
RL=16
RL=16
20 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25C 4.5 5.0 5.5
10
RL=64
RL=64 10 0 2.5
Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25C 4.5 5.0 5.5
0 2.5
3.0
3.5
4.0
Vcc (V)
3.0
3.5
4.0
Vcc (V)
Figure 44. Output power vs. power supply voltage
200 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25C RL=32
Figure 45. Output power vs. power supply voltage
280
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
180 160 140 120 100 80 60 40 20
240 200 160 120 80 40
RL=16
Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25C RL=32
RL=16
RL=64 3.0 3.5 4.0
Vcc (V)
RL=64 0 2.5 3.0 3.5 4.0
Vcc (V)
0 2.5
4.5
5.0
5.5
4.5
5.0
5.5
21/51
Electrical characteristics Figure 46. Output power vs. load resistance
1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25C
TS4956 Figure 47. Output power vs. load resistance
1600
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
1400 Vcc=5.5V 1200 1000 800 600 400 200 0 8 12 16 20 24 Vcc=3.3V Vcc=2.7V Vcc=5V
Vcc=5.5V Vcc=5V
Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25C
Vcc=3.3V Vcc=2.7V
8
12
16
20
24
28
32
28
32
Load resistance ()
Load resistance ()
Figure 48. Output power vs. load resistance
70 60 Vcc=5.5V 50 Vcc=5V 40 30 20 10 0 16 Vcc=3.3V Vcc=2.7V 20 24 28 32 36 40 44 48 52 56 60 64 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25C
Figure 49. Output power vs. load resistance
90
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
80 70 60 50 40 30 20 10 0 16 20 24 28 32 Vcc=3.3V Vcc=2.7V 36 40 44 48 Vcc=5.5V Vcc=5V
Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25C
52
56
60
64
Load resistance ()
Load resistance ()
Figure 50. Output power vs. load resistance
200 180 160 140 120 100 80 60 40 20 0 16 24 32 40 48 56 64 Vcc=3.3V Vcc=2.7V Vcc=5V Vcc=5.5V Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25C
Figure 51. Output power vs. load resistance
300
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
250 Vcc=5.5V 200 Vcc=5V 150
Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25C
Vcc=3.3V 100 Vcc=2.7V 50 0 16
24
32
40
48
56
64
Load resistance ()
Load resistance ()
22/51
TS4956 Figure 52. PSRR vs. frequency
0 Mode 1 - SPK out Vcc = 2.7V RL 8, Cb = 1F Inp. grounded Vripple = 200mVpp G=+12dB, +10.5dB
Electrical characteristics Figure 56. PSRR vs. frequency
0 Mode 1 - SPK out Vcc = 3.3V RL 8 , Cb = 1F Inp. grounded Vripple = 200mVpp
-20
PSRR (dB)
-20
G=+12dB
G=+10.5dB G=+1.5dB
-40
G=+6dB
G=+1.5dB
PSRR (dB)
-40 G=+6dB -60
-60 G=-18dB -80 G=-34.5dB G=-9dB
-80 G=-18dB
10000
G=-9dB G=-34.5dB 10000
-100 20
100
1000
Frequency (Hz)
-100 20
100
1000
Frequency (Hz)
Figure 53. PSRR vs. frequency
0 Mode 1 - SPK out Vcc = 5V RL 8, Cb = 1F Inp. grounded Vripple = 200mVpp G=+12dB -60
Figure 57. PSRR vs. frequency
0 -10 -20
PSRR (dB)
-20
PSRR (dB)
-40
G=+10.5dB G=+6dB
-30 -40 -50 -60
Mode 2 - SPK out Vcc = 2.7V RL 8 , Cb = 1F Inp. grounded Vripple = 200mVpp
G=+12dB G=+10.5dB G=+6dB G=+1.5dB
-80 G=+1.5dB -100 20 100 G=-9dB 1000
Frequency (Hz)
G=-18dB G=-34.5dB 10000
-70 -80 G=-34.5dB -90 20 100 G=-18dB 1000
Frequency (Hz)
G=-9dB 10000
Figure 54. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 58. PSRR vs. frequency
0 -10
G=+12dB
Mode 2 - SPK out Vcc = 3.3V RL 8, Cb = 1F Inp. grounded Vripple = 200mVpp
-20
PSRR (dB)
G=+10.5dB
G=+6dB G=+1.5dB
-30 -40 -50 -60 -70
Mode 2 - SPK out Vcc = 5V RL 8 , Cb = 1F Inp. grounded Vripple = 200mVpp
G=+12dB, +10.5dB G=+6dB G=+1.5dB
-40 -50 -60 -70 -80 -90 20 G=-34.5dB 100 G=-18dB 1000
Frequency (Hz)
G=-9dB 10000
-80 -90 20
G=-34.5dB 100
G=-18dB 1000
G=-9dB 10000
Frequency (Hz)
23/51
TS4956 Figure 60. PSRR vs. frequency
0 -10 -20
PSRR (dB)
Electrical characteristics Figure 63. PSRR vs. frequency
0
Mode 3 - LHP, RHP Vcc = 2.7V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp
-10 -20
PSRR (dB)
-30 -40 -50 -60 -70 -80 -90 20
G=+10.5dB G=+12dB
-30 -40 -50 -60 -70
Mode 3 - LHP, RHP Vcc = 3.3V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp G=+10.5dB G=+6dB G=+1.5dB G=+12dB
G=+6dB
G=+1.5dB
G=-18dB 100
G=-9dB 1000
G=-34.5dB
-80 -90 20
G=-9dB G=-34.5dB 100 1000
Frequency (Hz)
G=-18dB
10000
10000
Frequency (Hz)
Figure 61. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 64. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Mode 3 - LHP, RHP Vcc = 5V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp
G=+10.5dB G=+1.5dB
Mode 4 - LHP, RHP Vcc = 2.7V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp G=+10.5dB G=+12dB G=+6dB G=+1.5dB
-40 -50 -60 -70 -80 -90 20 G=-9dB G=-18dB 100 G=-34.5dB 1000
Frequency (Hz)
-40 -50 -60 -70 -80 -90 G=-18dB 100 G=-9dB 1000
Frequency (Hz)
G=+12dB
G=+6dB
G=-34.5dB 10000
10000
-100 20
Figure 62. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 65. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Mode 4 - LHP, RHP Vcc = 3.3V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp G=+10.5dB G=+1.5dB G=+12dB G=+6dB
Mode 4 - LHP, RHP Vcc = 5V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp G=+1.5dB G=+10.5dB G=+12dB
-40 -50 -60 -70 -80 -90 -100 20 G=-18dB 100 G=-9dB 1000
-40 -50 -60 -70 -80 G=-34.5dB G=-9dB 100 1000
Frequency (Hz)
G=+6dB
G=-34.5dB 10000
-90 G=-18dB -100 20
10000
Frequency (Hz)
24/51
TS4956 Figure 66. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Electrical characteristics Figure 69. PSRR vs. frequency
0 Mode 5 - MLO Vcc = 2.7V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp -10 -20 G=+12dB G=+6dB G=+1.5dB G=+10.5dB
PSRR (dB)
-30 -40 -50 -60 -70
Mode 5 - MLO Vcc = 3.3V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp G=+12dB
G=+10.5dB G=+6dB
-40 -50 -60 -70 -80 -90 -100 20 100 G=-9dB
G=-18dB G=-34.5dB 1000 10000
-80 -90 -100 20
G=+1.5dB G=-9dB 100 1000
Frequency (Hz)
G=-18dB G=-34.5dB 10000
Frequency (Hz)
Figure 67. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 70. PSRR vs. frequency
0 -10 -20
PSRR (dB)
Mode 5 - MLO Vcc = 5V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp
-40 -50 -60 -70 -80 -90 -100 20 100 G=+1.5dB
G=+12dB G=+6dB
G=+10.5dB G=-9dB
-30 -40 -50 -60 -70
Mode 6 - MLO Vcc = 2.7V RL 16 , Cb = 1F Inp. grounded Vripple = 200mVpp
G=+12dB G=+10.5dB G=+6dB G=+1.5dB
G=-18dB G=-34.5dB 1000
Frequency (Hz)
-80 -90 -100 20
G=-34.5dB
G=-18dB
G=-9dB 10000
10000
100
1000
Frequency (Hz)
Figure 68. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 71. PSRR vs. frequency
0 -10 Mode 6 - MLO Vcc = 5V RL 16 , Cb = 1F Inp. grounded Vripple = 200mVpp
Mode 6 - MLO Vcc = 3.3V RL 16, Cb = 1F Inp. grounded Vripple = 200mVpp
G=+12dB G=+6dB G=+10.5dB
PSRR (dB)
-20 -30 -40 -50 -60 -70
G=+12dB
G=+10.5dB
G=+6dB G=+1.5dB
-40 -50 -60 -70 -80 -90 -100 20 100 G=-9dB
G=+1.5dB
G=-34.5dB G=-18dB 1000 10000
-80 -90 -100 20
G=-9dB
G=-34.5dB G=-18dB
100
1000
Frequency (Hz)
10000
Frequency (Hz)
25/51
TS4956 Figure 72. PSRR vs. frequency
0 Mode 7 - BTL, SPK out Vcc = 2.7V -20 RL 8, Cb = 1F Inp. grounded -30 Vripple = 200mVpp -40 -10 -50 -60 -70 -80 -90 -100 20 G=-9dB 100 G=-18dB 1000
Frequency (Hz)
Electrical characteristics Figure 75. PSRR vs. frequency
0 -10 -20
PSRR (dB)
PSRR (dB)
G=+12dB G=+6dB G=+10.5dB G=+1.5dB
-30 -40 -50 -60 -70 -80
Mode 7 - BTL, SPK out Vcc = 3.3V RL 8 , Cb = 1F Inp. grounded Vripple = 200mVpp
G=+12dB G=+6dB
G=+10.5dB
G=+1.5dB
G=-34.5dB 10000
-90 -100 20
G=-34.5dB G=-9dB 100 G=-18dB 1000
Frequency (Hz)
10000
Figure 73. PSRR vs. frequency
0 -10 -20 -30
PSRR (dB)
Figure 76. CMRR vs. frequency
0 Mode 1 - SPK out Vcc = 2.7V, 3.3V, 5V RL 8, Cb = 1F Cin = 470F Vic = 200mVpp
Mode 7 - BTL, SPK out Vcc = 5V RL 8, Cb = 1F Inp. grounded Vripple = 200mVpp
-20 G=+12dB G=+6dB G=+1.5dB G=+10.5dB
CMRR (dB)
G=+12dB G=+6dB G=+10.5dB
-40 -50 -60 -70 -80 -90 -100 20 G=-9dB G=-34.5dB 100 G=-18dB 1000
Frequency (Hz)
-40
-60 G=+1.5dB G=-9dB -100 G=-34.5dB 100 G=-18dB 1000
Frequency (Hz)
-80
10000
10000
Figure 74. CMRR vs. frequency
0 Mode 3 - LHP, RHP Vcc = 2.7V, 3.3V, 5V RL 8 , Cb = 1F Cin = 470F Vic = 200mVpp
Figure 77. CMRR vs. frequency
0 Mode 5 - MLO Vcc = 2.7V, 3.3V, 5V RL 16, Cb = 1F Cin = 470F Vic = 200mVpp G=+12dB G=+10.5dB G=+6dB
-20
G=+12dB G=+6dB G=+10.5dB
CMRR (dB)
-20
CMRR (dB)
-40
-40
-60 G=+1.5dB G=-9dB -100 G=-34.5dB 100 G=-18dB 1000
Frequency (Hz)
-60
-80
-80
G=+1.5dB
G=-9dB
G=-18dB G=-34.5dB
10000
-100
100
1000
Frequency (Hz)
10000
26/51
TS4956 Figure 78. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Electrical characteristics Figure 81. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
SNR (dB)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 8 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 8 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 79. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 82. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 80. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 83. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 8 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 8 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
27/51
TS4956 Figure 84. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Electrical characteristics Figure 87. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 85. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 88. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 86. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 89. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
28/51
TS4956 Figure 90. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Electrical characteristics Figure 93. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 91. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 94. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 92. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 95. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
29/51
TS4956 Figure 96. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Electrical characteristics Figure 99. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 97. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 100. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 98. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Figure 101. SNR vs. power supply voltage
90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 32 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
30/51
TS4956 Figure 102. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
Electrical characteristics Figure 105. SNR vs. power supply voltage
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 8 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
SNR (dB)
Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 16 THD+N < 0.5% Tamb = 25C 2.7 3.3
Vcc (V)
5
5
Figure 103. Current consumption vs. power supply voltage
8 No loads 7 Tamb = 25C 6 5 4 3 Mode 1,2 2 Mode4 Mode7 Mode3
Figure 106. Standby current consumption vs. power supply voltage
0.5 No loads Tamb = 25C 0.4
Istdby (A)
0.3
Icc (mA)
0.2
0.1 1 0 0 Mode 5,6 0.0 1 2 3
Vcc (V)
4
5
0
1
2
3
Vcc (V)
4
5
6
Figure 104. Frequency response mode 1, 2, 7
12 10 8
Gain (dB)
Figure 107. Frequency response mode 3, 4
12
G=+12dB, RL=16 G=+12dB, RL=8
Mode 1, 2, 7 BTL, SPK out Cin = 330nF Tamb 25 C
Gain (dB)
10 8 6 4 2 0
G=+12dB, RL=16,32
Mode 3, 4 LHP, RHP Cin = 330nF Tamb 25 C
6 4 2 0 -2 G=+6dB, RL=16 G=+6dB, RL=8
G=+6dB, RL=16,32
G=+1.5dB, RL=16 G=+1.5dB, RL=8 100 1000
Frequency (Hz)
G=+1.5dB, RL=16,32 100 1000
Frequency (Hz)
-2 10000
10000
31/51
TS4956 Figure 108. Frequency response modes 5, 6
12 10 8 6 4
Gain (dB)
Gain (dB)
Electrical characteristics Figure 111. Frequency response modes 5, 6
12 10 8 6 4 2 0 -2 -4 -6 -8 -10 G=+6dB, RL=32 G=+6dB, RL=16 G=+1.5dB, RL=32 G=+1.5dB, RL=16 100 1000
Frequency (Hz)
G=+12dB, RL=32 G=+12dB, RL=16
G=+12dB, RL=32 G=+12dB, RL=16
2 0 -2 -4 -6 -8 -10 G=+6dB, RL=32 G=+6dB, RL=16 G=+1.5dB, RL=32 G=+1.5dB, RL=16 100 1000
Frequency (Hz)
Mode 5, 6 - MLO Cin = 330nF Cout = 220F Tamb 25 C 10000
Mode 5, 6 - MLO Cin = 330nF Cout = 470F Tamb 25 C 10000
Figure 109. Power dissipation vs. output power (per channel)
200 180 160
Power Dissipation (mW)
Figure 112. Power dissipation vs. output power (per channel)
300 250
Power Dissipation (mW)
140 120 100 80 60 40 20 0 0 50 100 150 200 250 RL=16 Mode 1, 2, 7 BTL, SPK out Vcc = 2.7V F = 1kHz THD+N < 10% 300 350 400 THD+N=1% RL=8
200 THD+N=1% RL=8 150 100 50 0 RL=16
Mode 1, 2, 7 BTL, SPK out Vcc = 3.3V F = 1kHz THD+N < 10% 300 400 500 600
0
100
200
Output Power (mW)
Output Power (mW)
Figure 110. Power dissipation vs. output power (per channel)
700 650 600 550 500 450 400 350 300 250 200 150 100 50 0
Figure 113. Power dissipation vs. output power (per channel)
900 800 700
Power Dissipation (mW)
Power Dissipation (mW)
600 THD+N=1% 500 400 300 200 RL=16 100 0 0 200 400 600 Mode 1, 2, 7 BTL, SPK out Vcc = 5.5V F = 1kHz THD+N < 10% 800 1000 1200 1400 1600 1800 RL=8
THD+N=1% RL=8
RL=16
Mode 1, 2, 7 BTL, SPK out Vcc = 5V F = 1kHz THD+N < 10% 800 1000 1200 1400
0
200
400
600
Output Power (mW)
O utput Power (mW)
32/51
TS4956 Figure 114. Power dissipation vs. output power (per channel)
90 80 70
Power Dissipation (mW) Power Dissipation (mW)
Electrical characteristics Figure 117. Power dissipation vs. output power (per channel)
130 THD+N=1% 120 110 100 90 80 70 60 50 40 30 20 10 50 0 0 10 20 30 Mode 3, 4 - LHP, RHP Vcc = 3.3V F = 1kHz THD+N < 10% 40 50 60 RL=32 RL=16 THD+N=1%
60 50 40 30 20 10 0 0 10 20
RL=16
RL=32 Mode 3, 4 - LHP, RHP Vcc = 2.7V F = 1kHz THD+N < 10% 30 40
Output Power (mW)
Output Power (mW)
Figure 115. Power dissipation vs. output power (per channel)
220 200 180
Power Dissipation (mW)
Figure 118. Power dissipation vs. output power (per channel)
260 240
THD+N=1%
Power Dissipation (mW)
220 RL=16 200 180 160 140 120 100 80 60 40 20 70 0 0
THD+N=1% RL=16
160 140 120 100 80 60 40 20 0 0 10 20 30
RL=32
RL=32
Mode 3, 4 - LHP, RHP Vcc = 5V F = 1kHz THD+N < 10% 40 50 60
Mode 3, 4 - LHP, RHP Vcc = 5.5V F = 1kHz THD+N < 10% 10 20 30 40 50 60 70
Output Power (mW)
Output Power (mW)
Figure 116. Power dissipation vs. output power
24 22 20
Power Dissipation (mW)
Figure 119. Power dissipation vs. output power
40 35
Pow Dissipation (m ) er W
18 16 14 12 10 8 6 4 2 0 0 10 20 30 40 RL=32 Mode 5, 6 - MLO Vcc = 2.7V F = 1kHz THD+N < 10% 50 60 70 THD+N=1% RL=16
30 25 20 15 10 5 0 0 10 RL=32 Mode 5, 6 - MLO Vcc = 3.3V F = 1kHz THD+N < 10% 40 50 60 70 80 90 100 THD+N=1% RL=16
20
30
Output Power (mW)
Output Power (mW)
33/51
TS4956 Figure 120. Power dissipation vs. output power
90 80 70
Power Dissipation (mW)
Power Dissipation (mW)
Electrical characteristics Figure 123. Power dissipation vs. output power
100 90 80 70 60 50 40 30 20 10 0 0 50 100 150 RL=32 Mode 5, 6 - MLO Vcc = 5.5V F = 1kHz THD+N < 10% 200 250 300 THD+N=1% RL=16
60 THD+N=1% 50 40 30 20 10 0 0 RL=32 Mode 5, 6 - MLO Vcc = 5V F = 1kHz THD+N < 10% RL=16
20 40 60 80 100 120 140 160 180 200 220 240
Output Power (mW)
Output Power (mW)
Figure 121. Power derating curves
Flip-Chip Package Power Dissipation (W)
Figure 124. Crosstalk vs. frequency
0 -10 Vcc = 5V, 3.3V, 2.7V Mode 4 LHP -> RHP RHP -> LHP Tamb = 25C RL=16 Po=15mW RL=32 Po=10mW
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 No Heat sink Heat sink surface = 125mm
2
-20
Crosstalk Level (dB)
-30 -40 -50 -60 -70
25
50 75 100 Ambiant Temperature (C)
125
150
-80
100
1000
Frequency (Hz)
10000
Figure 122. Crosstalk vs. frequency
0 -10 -20
Crosstalk Level (dB)
-30 -40 -50 -60 -70 -80 -90 -100
Mode 4 RL = 8 BTL out -> SPK out SPK out -> BTL out Tamb = 25C Vcc=5V Po=700mW
Vcc=2.7V Po=200mW
Vcc=3.3V Po=300mW
100
1000
Frequency (Hz)
10000
34/51
TS4956
Application information
4
Application information
The TS4956 integrates 4 monolithic power amplifiers and has one differential input and two single-ended inputs. The output amplifiers can be configured in 7 different modes as one SE (single-ended) capacitively-coupled output, two phantom ground headphone outputs and two BTL outputs. Figure 1 on page 3 and Figure 2 on page 4 shows schemes of these configurations and Table 7 on page 6 describes these configurations in different modes. This chapter gives information on how to configure the TS4956 in application.
4.1
4.1.1
Output configurations
Shutdown
When the device is in shutdown mode, all of the device's outputs are in a high impedance state.
4.1.2
Single-ended output configuration (modes 5 and 6)
When the device is woken-up via the IC interface, output amplifier on output MLO is biased to the V CC/2 voltage. In this configuration an output capacitor, Cout, on the single-ended output is needed to block the VCC/2 voltage and couples the audio signal to the load. VCC/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output capacitor C out charged and to improve pop performance on this output during the switching between any given mode to Mode 5 or 6. When the device is in Mode 5 or 6 where the single-ended output MLO is active, all other outputs are in a high impedance state.
4.1.3
Phantom ground output configuration (modes 3 and 4)
In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected to PHG pin and biased to the V CC/2 voltage. Output amplifiers (pins LHP and RHP) are also biased to the V CC/2 voltage. One end of the load is connected to output amplifier and one to the PHG buffer. Therefore, no output capacitors are needed. The advantage of the PHG output configuration is fewer external components compared with a SE configuration. However, note that in this configuration, the device has higher power dissipation (see Section 4.3: Power dissipation and efficiency on page 37). All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. To achieve better crosstalk results in this case, each speaker should be connected with separate PHG wire (2 speakers connected with 4 wires) as shown in Figure 1 on page 3 (instead of using only one common PHG wire for both speakers, i.e. 2 speakers connected with 3 wires).
35/51
TS4956
Application information
4.1.4
BTL output configuration (modes 1, 2, 7)
In a BTL (Bridge Tied Load) output configuration (modes 1, 2 and 4), active outputs are biased to the VCC/2 voltage. All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. BTL means that each end of the load is connected to two single-ended output amplifiers. Therefore we have:
single-ended output 1 = Vout1 = Vout (V) single-ended output 2 = Vout2 = -Vout (V)
and Vout1 - Vout2 = 2Vout (V) For the same power supply voltage, the output voltage amplitude is 2 times higher than the output voltage in the single-ended or phantom ground configurations and the output power is 4 times higher than the output power in the single-ended or phantom ground configurations.
4.2
Power limitation in the phantom ground configuration
A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output power is achieved by limiting the output voltage and output current on each amplifier. The maximum value of the output voltage, Vout max , is set to a value of 1.65V in order to reach a maximum output power of the sinusoidal signal of around 40mW per channel with a 32 load resistance and THD+N<1%. The maximum value of output current Iout max is set to value 70mA in order to reach a maximum output power of the sinusoidal signal of around 40mW per channel with a 16 load resistance and THD+N<1%. The maximum output power with these voltage and current limitations is reached with load values more than 16 and less than 32 as explained by Figure 125.
Figure 48 shows the functionality of the power limitation with different load resistances.
Figure 125. Voltage and current limitation on headphones
RL=32 Ohms
Vout VpeakMAX=1.65V
RL=24 Ohms
RL=16 Ohms
Ipeak MAX=70mA
Iout
36/51
TS4956
Application information
4.3
Power dissipation and efficiency
Hypotheses:

Voltage and current in the load are sinusoidal (Vout and Iout). Supply voltage is a pure DC source (VCC).
V out = V PEAK sin t ( V )
Regarding the load we have:
and
V out I out = ---------- ( A ) RL
and
V PEAK P out = ---------------- ( A ) 2R L
2
4.3.1
Single-ended output configuration (modes 5 and 6)
The average current delivered by the supply voltage is:
V PEAK 1 V PEAK Icc AVG = ------ ----------------- sin ( t ) dt = ---------------- ( A ) 2 RL R L
0
Figure 126. Current delivered by supply voltage in the single-ended output configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
So, the power dissipation by single-ended amplifier is
P diss = P supply - P out ( W ) 2V C C P diss = ------------------ P out - P out ( W ) RL
and the maximum value is obtained when:
P diss P out =0
37/51
TS4956 and its value is:
P diss
M AX
Application information
V CC = ------------ ( W ) 2 RL
2
Note:
This maximum value depends only on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
V PEAK P out = ------------------ = -------------------P supply 2V CC
The maximum theoretical value is reached when VPEAK = VCC/2, so
= -- = 78.5% 4
4.3.2
Phantom ground output configuration (modes 3, 4):
The average current delivered by the supply voltage is:
Icc AVG 2V PEAK 1 V PEAK = -- ----------------- sin ( t ) dt = -------------------- ( A ) RL R L
0
Figure 127. Current delivered by supply voltage in the phantom ground output configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
Then, the power dissipation by each amplifier is
2 2V CC P diss = ---------------------- P out - P out ( W ) RL
and the maximum value is obtained when:
P diss P out =0
and its value is:
P diss
MA X
2V C C = -------------- ( W ) 2 RL
2
Note:
This maximum value depends only on the power supply voltage and load values.
38/51
TS4956
Application information The efficiency is the ratio between the output power and the power supply:
P out V PEAK = ------------------ = -------------------P supply 4V CC
The maximum theoretical value is reached when VPEAK = VCC/2, so
= -- = 39.25% 8
The TS4956 has in modes 3 and 4 two active output power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier's maximum power dissipation. It is calculated as follows:
Pdiss 1 = power dissipation due to the first power amplifier. Pdiss 2 = power dissipation due to the second power amplifier. Total Pdiss = Pdiss 1 + Pdiss 2 (W)
In most cases, Pdiss 1 = Pdiss 2, giving:
TotalP diss = 2P diss1 4 2V C C TotalPdiss = ---------------------- P out - 2P out ( W ) RL
4.3.3
BTL output configuration (modes 1, 2, 7):
The average current delivered by the supply voltage is:
Icc AVG 2V PEAK 1 V PEAK = -- ----------------- sin ( t ) dt = -------------------- ( A ) RL R L
0
Figure 128. Current delivered by supply voltage in the BTL output configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
Then, the power dissipation by each amplifier is
2 2V CC P diss = ---------------------- P out - P out ( W ) RL
39/51
TS4956 and the maximum value is obtained when:
P diss P out =0
Application information
and its value is:
P diss
MA X
2V C C = -------------- ( W ) 2 RL
2
Note:
This maximum value depends only on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
P out V PEAK = ------------------ = -------------------P supply 4V CC
The maximum theoretical value is reached when VPEAK = VCC, so
= -- = 78.5% 4
The TS4956 has one active output BTL power amplifier when in modes 1 and 2. In mode 7, the TS49656 has two active output BTL power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier's maximum power dissipation. It is calculated as follows:

Pdiss 1 = power dissipation due to the first BTL power amplifier. Pdiss 2 = power dissipation due to the second BTL power amplifier. Total Pdiss = Pdiss 1 + Pdiss 2 (W)
In most cases, Pdiss 1 = P diss 2, giving:
TotalP diss = 2P diss1 4 2V C C TotalPdiss = ---------------------- P out - 2P out (W) RL
40/51
TS4956
Application information
4.4
4.4.1
Low frequency response
Input capacitor Cin
The input coupling capacitor blocks the DC part of the input signal at the amplifier input. In the low-frequency region, C in starts to have an effect. Cin with Zin forms a first-order, highpass filter with -3 dB cut-off frequency.
1 F C L = ----------------------- (Hz) 2Z in C in
Zin is the input impedance of the corresponding input.
Note:
For all inputs, the impedance value remains constant for all gain settings. This means that the lower cut-off frequency doesn't change with the gain setting. Note also that 30 k is a typical value and there is tolerance around this value. Using Figure 129 you can easily establish the Cin value required for a -3dB cut-off frequency.
Figure 129. 3dB lower cut off frequency vs. input capacitance
100 All gain setting Tamb=25C
Low -3dB Cut Off Frequency (Hz)
Minimum Input Impedance
10
Typical Input Impedance Maximum Input Impedance
0.1
Input Capacitor Cin (F)
1
4.4.2
Output capacitor Cout
In the single-ended configuration an external output coupling capacitor, C out, is needed. This coupling capacitor C out, together with the output load RL, forms a first-order high-pass filter with -3 dB cut off frequency.
1 F CL = ------------------------- ( Hz ) 2R L C out
See Figure 130 to establish the Cout value for a -3dB cut-off frequency required. These two first-order filters form a second-order high-pass filter. The -3 dB cut-off frequency of these two filters should be the same, so the following formula should be respected:
1 1 ----------------------- ------------------------2Z in C in 2R L C out
41/51
TS4956
Application information Figure 130. 3dB lower cut off frequency vs. output capacitance
100
Low -3 dB Cut Off frequency (Hz)
All gain setting Tamb = 25C
10 RL=16
RL=32
1 100
1000
Output capacitor Cout (F)
4.5
Single-ended input configuration in modes 1, 3 and 5
It is possible to use the differential inputs MIP and MIN of the TS4956 as one single-ended input in modes where the differential inputs are active (modes 1, 3 and 5). The schematic in Figure 131 shows this configuration. Figure 131. Single-ended input in modes 1, 3 and 5 for a typical application
A Vcc A
Cs1 1F
Cs2 100nF
+
C5 Vcc
C3 Vcc
B
B
TS4956
Cin1 A1 + 330nF Cin2 C A2 + 330nF
LHP Amplifier
MODE3: GxMIP
MIP
Stereo Input Left
PHG Amplifier
LHP
B6
16/32 Ohms
MIN
Stereo Input Right
RHP Amplifier
PHG
A7
C
MODE3: GxMIP
Mode Select
B4
RHP
Speaker Amplifier
D6
16/32 Ohms
LIN
Stereo Input Left
B2
MODE1: GxMIP
8 Ohms
D
SRP+ SRNMLO Amplifier D2
D A5
RIN
Stereo Input Right
MODE5: GxMIP MLO
E7 Cout+ 220F R1 1k
16/32 Ohms
E
Bias BYPASS
D4
Cb 1F I2CVCC SCL
I2C
Digital volume control
E
GND C1
GND C7
SDA E5
SCL E1
I2CVCC
E3
+
SDA
F
I2C BUS
F
42/51
TS4956
Application information
4.6
Decoupling of the circuit
Two capacitors are needed to properly bypass the TS4956 -- a power supply capacitor Cs and a bias voltage bypass capacitor C b. Cs has a strong influence on the THD+N at high frequencies (above 7 kHz) and indirectly on the power supply disturbances. With a C s value of about 1 F, you can expect to obtain THD+N performances similar to those shown in the datasheet. If C s is lower than 1 F, THD+N increases in high frequency and disturbances on power supply rail are less filtered. On the contrary, if Cs is higher than 1 F, disturbances on the power supply rail are more filtered. Cb has an influence on THD+N at lower frequencies, but its value has critical impact on the final result of PSRR with inputs grounded at lower frequencies:

If Cb is lower than 1 F, THD+N increases at lower frequencies and the PSRR worsens upwards. If Cb is higher than 1 F, the benefit on THD+N and PSRR in the lower frequency range is small.
The value of C b also has an influence on startup time.
4.7
Power On Reset
When power is applied to VCC, an internal Power On Reset holds the TS4956 in a reset state (shutdown) until the supply voltage reaches its nominal value. The Power On Reset has a typical threshold of 1.75 V. During this reset state the output configuration is the same as in the shutdown mode.
43/51
TS4956
Application information
4.8
4.8.1
Notes on PSRR measurements
What is PSRR?
The PSRR is the Power Supply Rejection Ratio. The PSRR of a device is the ratio between a power supply disturbance and the result on the output. In other words, the PSRR is the ability of a device to minimize the impact of power supply disturbance to the output.
4.8.2
How we measure the PSRR?
The PSRR was measured with the TS4956 in the configuration shown in the schematic in Figure 132 Figure 132. Configuration schematic of TS4956 for PSRR measurement
A Vripple A
Vcc
C5
C3
B
B
Vcc
Vcc
TS4956
Diff. input +
10 Ohms Cin1 A1 + 330nF Cin2 C 10 Ohms A2 + 330nF
LHP Amplifier
MIP
Stereo Input Left
PHG Amplifier
LHP
B6
MODE7
RL 16 Ohms
MIN
Stereo Input Right
RHP Amplifier
PHG
A7 RL 16 Ohms
RL 8 Ohms
C
Diff. input SE input left
Cin3 + 330nF B4
Mode Select LIN Stereo Input Left
RHP
Speaker Amplifier
D6
10 Ohms D
B2
SRP+ SRNMLO Amplifier D2
RL 8 Ohms
D
Cin4 + 330nF
A5
RIN
Stereo Input Right
10 Ohms
SE input right
MLO
E7
Cout+ 220F RL 16 Ohms
E
Bias BYPASS
D4
Cb 1F I2CVCC SCL
I2C
Digital volume control
E
GND C1
GND C7
SDA E5
SCL E1
I2CVCC
E3
+
SDA
F
I2C BUS
F
Main operating principles of TS4956 for purposes of PSRR measurement:

The DC voltage supply (VCC) is fixed The AC sinusoidal ripple voltage (Vripple) is fixed No bypass capacitor Cs is used
The PSRR value for each frequency is calculated as:
RMS ( Out put ) PSRR = 20Log ---------------------------------- ( dB ) RMS ( Vripple )
RMS is a rms selective measurement.
44/51
TS4956
Application information
4.9
Pop and click performance
The TS4956 has internal pop and click reduction circuitry which eliminates the output transients, such as for example during switch-on or switch-off phases, or during a switch from one output mode to another, or when changing the volume. The performance of this circuitry is closely linked to the values of the input capacitor Cin, the output capacitor C out (for single-ended configuration) and the bias voltage bypass capacitor C b. The values of C in and Cout are determined by the lower cut-off frequency value requested. The value of C b will affect the THD+N and PSRR values in lower frequencies. The TS4956 is optimized to have low pop and click in the typical schematic configurations (see Figure 1 on page 3 and Figure 2 on page 4).
4.10
Thermal shutdown
The TS4956 device has internal thermal shutdown protection in the event of extreme temperatures. Thermal shutdown is active when the device reaches temperature 150C.
45/51
TS4956
Application information
4.11
Evaluation board
An evaluation board for the TS4956 is available. For more information about this evaluation board, please refer to the Application Note, which can be found on www.st.com. Figure 133. Schematic of the evaluation board available for the TS4956Figure 133.
I2CVCC Vcc Cn5 Cn1 Cn2 Vcc
I2C SUPPLY
3 2 1
TS4956 POWER SUPPLY
Cs1 1F Cs2 100nF
+
17
8
TS4956
Vcc
Vcc
Diff. input +
Cin1 JP1 4 3 2 1 + 330nF Cin2 5 + 330nF 7
LHP Amplifier
MIP
Stereo Input Left
PHG Amplifier
LHP
1 PHONEJACK STEREO 1 JP6
MIN
Diff. input -
Stereo Input Right
RHP Amplifier
PHG
2
1 2 3
2 3 J2
SE input left
Cin3 1 2 JP2 Cin4 1 2 JP3 3 + 330nF 4 + 330nF
Mode Select LIN Stereo Input Left
RHP
Speaker Amplifier
15
6
SRP+ SRNMLO Amplifier 10 C2 + 220F R7 1K
JP4 1 2
RIN
Stereo Input Right
MLO
16
SE input right
JP5 1 2
Bias BYPASS
13
I2C
SDA 14 SCL 11
Digital volume control
GND 9 GND 18
I2CVCC
12
C1 1F
+
I2CVCC
Cn3
Cn4
I2CVCC I2CVCC
R5 10K I2CVCC SCL R4 180R SDA 16 15 J1 5 9 4 8 3 7 2 6 1 DB9 GND DTR TXD RTS DSR GND2 R2 1K D1 3 1N4148 4 KP1040 R1 2k2 R3 1K D2 5 1N4148 6 KP1040 GND2 GND2 1C 12 11 1B 14 13 KP1040 1A 1 2 T1 BS170 SCL SDA SDA SCL
R6 10K
SDA
I2C BUS
46/51
TS4956
Package mechanical data
5
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
5.1
18-bump flip-chip package
2500 m
2400 m 750m 500m
Die size: 2.5x2.4 mm 30m Die height (including bumps): 600m Bumps diameter: 315m 50m Bump diameter before reflow: 300m 10m Bumps height: 250m 40m Die height: 350m 20m Pitch: 500m 50m Coplanarity: 50m max
866m 866m
600 m
Figure 134. Footprint recommendations
47/51
TS4956
Package mechanical data
Figure 135. Pin out (top view)
Figure 136. Marking (top view)
7 6 5 4 3 2 1
PGH
GND
MLO
E
LHPRHP
RHP+ LHP
RIN
VCC
SDA
56 X YWW
Markings are: - ST logo - First two letters give part number code:56 - Third letter gives assembly plant code: X - Three digit date code: YWW - Lead-free EcoPack symbol: E - The dot marks pin A1
LIN VCC MIN SRP+ SRP
BYPASS I2CVCC
SRNSRN
MIP
GND
SCL
A
B
C
D
E
Figure 137. Tape & reel schematic (top view)
4
1.5
1 A A
1
8
Die size X + 70m
4
All dimensions are in mm
User direction of feed
Device orientation
The devices are oriented in the carrier pocket with pin number 1A adjacent to the sprocket holes.
Die size Y + 70m
48/51
TS4956
Package mechanical data
5.2
Daisy chain sample
The daisy chain sample features pins connected two by two. The schematic in Figure 138 illustrates the way that the pins are connected to each other. This sample is used for testing continuity on board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting a Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested. Figure 138. Top view of daisy chain sample
2.5 mm
7 6 5 4 3 2 1 A B C D E
2.2 mm
Table 14.
Order code for daisy chain sample
Temperature Range -40, +85C Package Flip-Chip18 Marking DC2
Part Number TSDC02JT
49/51
TS4956
Revision history
6
Revision history
Table 15.
Date Nov. 2005 Dec. 2005 May 2006
Document revision history
Revision 1 2 3 Changes First release corresponding to the preliminary data version. cancellation the back coating sale type. Final datasheet.
50/51
TS4956
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
51/51


▲Up To Search▲   

 
Price & Availability of TS4956EIJT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X